Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 646, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891479

RESUMO

BACKGROUND: The mammalian oviduct is a complex, fibromuscular organ known for its role in orchestrating a series of timely and dynamic changes to suitably support early embryogenesis. Climate change-induced heat stress (HS) is one of the largest single stressors compromising reproductive function in humans and farm animals via systemic changes in the redox status of the maternal environment, adversely affecting fertilization and early embryonic development. Oviductal organoids represent a unique 3-dimensional, biomimetic model to study the physiology of the oviduct and its subsequent impact on embryo development under various environmental conditions. RESULTS: Our study is the first to demonstrate an innovative approach to understanding the cascade of molecular changes sustained by bovine oviductal organoids under HS and the subsequent maternal signals harnessed within their secreted extracellular vesicles (EVs). Transcriptomic analysis of oviductal organoids exposed to HS revealed 2,570 differentially expressed genes (1,222 up- and 1,348 downregulated), while EV-coupled miRNome analysis disclosed 18 miRNAs with significant differential expression (12 up- and 6 downregulated) in EVs from thermally stressed organoids compared to EVs released from organoids cultured under thermoneutral conditions. Genes activated in oviductal organoids in response to thermal stress, include: COX1, ACTB, CST6, TPT1, and HSPB1, while miR-1246, miR-148a, miR21-5p, miR-451, and miR-92a represent the top highly abundant EV-coupled miRNAs released in response to HS. Pathway analysis of genes enriched in organoids exposed to thermal stress showed the enrichment of endocrine resistance, cellular senescence, and notch signaling pathways. Similarly, EV-coupled miRNAs released from thermally stressed organoids showed their potential regulation of genes involved in cellular senescence, p53 signaling, and TGF-beta signaling pathways. CONCLUSIONS: In conclusion, the cellular and extracellular response of bovine oviductal organoids to in vitro HS conditions reveal the prospective impact of environmental HS on the physiology of the oviduct and the probable subsequent impacts on oocyte fertilization and early embryo development. Future studies elucidating the potential impact of HS-associated EVs from oviductal organoids on oocyte fertilization and preimplantation embryo development, would justify the use of an organoid model to optimally understand the oviduct-embryo communication under suboptimal environments.


Assuntos
Tubas Uterinas , MicroRNAs , Humanos , Gravidez , Feminino , Animais , Bovinos , Tubas Uterinas/metabolismo , Multiômica , Estudos Prospectivos , Oviductos/metabolismo , MicroRNAs/metabolismo , Organoides/metabolismo , Resposta ao Choque Térmico/genética , Mamíferos/metabolismo
2.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298490

RESUMO

The equine chorionic girdle is comprised of specialized invasive trophoblast cells that begin formation approximately 25 days after ovulation (day 0) and invade the endometrium to become endometrial cups. These specialized trophoblast cells transition from uninucleate to differentiated binucleate trophoblast cells that secrete the glycoprotein hormone equine chorionic gonadotropin (eCG; formerly known as pregnant mare serum gonadotropin or PMSG). This eCG has LH-like activity in the horse but variable LH- and FSH-like activity in other species and has been utilized for these properties both in vivo and in vitro. To produce eCG commercially, large volumes of whole blood must be collected from pregnant mares, which negatively impacts equine welfare due to repeated blood collections and the birth of an unwanted foal. Attempts to produce eCG in vitro using long-term culture of chorionic girdle explants have not been successful beyond 180 days, with peak eCG production at 30 days of culture. Organoids are three-dimensional cell clusters that self-organize and can remain genetically and phenotypically stable throughout long-term culture (i.e., months). Human trophoblast organoids have been reported to successfully produce human chorionic gonadotropin (hCG) and proliferate long-term (>1 year). The objective of this study was to evaluate whether organoids derived from equine chorionic girdle maintain physiological functionality. Here we show generation of chorionic girdle organoids for the first time and demonstrate in vitro production of eCG for up to 6 weeks in culture. Therefore, equine chorionic girdle organoids provide a physiologically representative 3D in vitro model for chorionic girdle development of early equine pregnancy.


Assuntos
Gonadotropinas Equinas , Trofoblastos , Gravidez , Humanos , Cavalos , Animais , Feminino , Gonadotropinas Equinas/farmacologia , Diferenciação Celular , Gonadotropina Coriônica/farmacologia , Organoides
3.
Theriogenology ; 196: 167-173, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36423511

RESUMO

Next-generation in vitro culture model systems are needed to study the reproductive pathologies that affect domestic animals. These 3D culture models more closely mimic normal physiological function to allow a greater understanding of reproductive pathology and to trial therapeutics without the welfare concerns and the increased time and cost associated with live animal research. Recent advances with in vitro cell culture systems utilizing human and laboratory animal tissues have been reported, but implementation of these technologies in veterinary species has been slower. Organoids are a physiologically representative 3D cell culture system that can be maintained long-term. By combining organoid culture with cryopreservation, a long-term, experimental model can be available for year-round application, thus bypassing seasonality and reproductive tract availability restrictions. Here we report the generation and cryopreservation of feline oviductal organoids for the first time. Optimal culture medium for the generation of feline oviductal organoids was established, and organoids were successfully cryopreserved using three different freezing media with organoids from each treatment demonstrating comparable viability, growth rate, and protein expression after thawing and culture. Feline oviductal organoids may facilitate an in vivo-like environment that, in conjunction with co-culture for in vitro maturation and in vitro fertilization, may positively influence in vitro gamete and embryo development, embryo quality, and pregnancy rates after embryo transfer in domestic and nondomestic felids. Furthermore, readily available cryopreserved feline oviductal organoids will facilitate this co-culture, which is of particular importance to endangered felid breeding programs where tissue and gamete samples are often opportunistically obtained with little or no notice.


Assuntos
Processamento de Proteína Pós-Traducional , Proteômica , Humanos , Gatos , Animais
4.
Methods Protoc ; 5(3)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35736552

RESUMO

Organoids are a type of three-dimensional (3D) cell culture that more closely mimic the in vivo environment and can be maintained in the long term. To date, oviductal organoids have only been reported in laboratory mice, women, and cattle. Equine oviductal organoids were generated and cultured for 42 days (including 3 passages and freeze-thawing at passage 1). Consistent with the reports in mouse and human oviductal organoids, the equine oviductal organoids revealed round cell clusters with a central lumen. Developing a 3D model of the mare oviduct may allow for an increased understanding of their normal physiology, including hormonal regulation. These organoids may provide an environment that mimics the in vivo equine oviduct and facilitate improved in vitro embryo production in equids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...